I. <u>Puissances d'un nombre relatif.</u>

1) Exposant entier positif.

Définition:

- a désigne un nombre relatif et n un entier positif non nul.
- a^n désigne le produit de n facteurs égaux à $a:a^n=$

Le nombre *n* s'appelle un *exposant*.

Exemple:

 3^4 est le produit de 4 facteurs égaux à 3. Donc : 3^4 =

Calculer:

$$7^3 =$$

$$9^7 =$$

$$(-3)^5 =$$

Cas particulier: $a^1 =$ exemple : $5^1 =$

Convention: pour $a \neq 0$, on convient que : $a^0 = 1$ exemple : $7^0 = 1$

Attention: Ne pas confondre!!!

$$(-5)^4 =$$

$$-5^4 =$$

Applications:

Quel est le signe des nombres suivants ?

 $(-7)^{2012}$: Produit de 2012 facteurs tous égaux à (-7). Or, 2012 est un nombre . Donc $(-7)^{2012}$ est

 $(-11)^{93}$: Produit de 93 facteurs tous égaux à (-11). Or,93 est un nombre . Donc $(-11)^{93}$ est

$$-5^{110} = -5 \times 5 \times 5 \times \dots \times 5$$

2) Exposant entier négatif.

A l'aide de la calculatrice, calculer :

$$2^{-3} = e$$

$$5^{-2} =$$
 et $\frac{1}{5^2} = \frac{1}{25} =$

Définition:

Exemple:

2⁻³ est l'inverse de 2³ donc 2⁻³

Cas particulier:

Pour $a \neq 0$, a^{-1} est l'inverse de a.

Exemple:

5⁻¹ est l'inverse de . Donc

Calculer:

Donner les résultats sous forme de fractions irréductibles.

Applications:

Quel est le signe des nombres suivants ?

3) Priorités opératoires.

Attention, quand une expression comporte des puissances, on calcule en priorité :

- 1. Les calculs entre parenthèses.
- 2. Les puissances.
- 3.Les multiplications et les divisions.
- **4.**Les additions et les soustractions.

Exemples:

II- Puissances de 10.

1) Définitions.

n désigne un nombre **entier positif** non nul.

On note 10^n le produit de n facteurs tous égaux à 10.

Applications:

 $10^5 =$

 $10^9 =$

 $10^1 =$

 $10^{22} = 10\ 000\ 000\ 000\ 000\ 000\ 000$

 $1 \ \operatorname{gogol} \ = 10 \ 000 \$

On note 10^{-n} l'inverse de 10^{n} .

Applications:

 $10^{-2} =$

 $10^{-5} =$

 $10^{-9} =$

 $10^{-1} =$

Attention: Par convention $10^0 =$

1) Calculer avec des puissances.

a. Après avoir décomposé le produit, écrire le résultat sous la forme d'une puissance de 10 :

$A = 10^3 \times 10^2$	$B = 10^4 \times 10^5$	$C = 10^{-5} \times 10^{7}$	On peut conjecturer la propriété :
$\mathbf{A} = 1 \ 000 \times 100$	$B = 10\ 000 \times 100\ 000$	C = 0,00001×10 000 000	Etant donnés deux entiers relatifs n et p , on a :
$\mathbf{A} = 100 \ 000$	B = 1 000 000 000	C = 100	
$\mathbf{A} = \mathbf{10^5}$	$\mathbf{B} = \mathbf{10^9}$	$C = 10^2$	

b. Même consigne :

$A=\frac{10^7}{10^3}$	$B = \frac{10^8}{10^5}$	$C = \frac{10^{-5}}{10^2}$	On peut conjecturer le propriété : Etant donnés deux entiers relatifs n et p ,
$A = \frac{10000000}{1000}$	$\mathbf{B} = \frac{100000000}{100000}$	$\mathbf{C} = \frac{0,00001}{100}$	on a:
$\mathbf{A} = 10 \ 000$	B = 1000	C = 0,000 000 1	
$\mathbf{A} = \mathbf{10^4}$	$\mathbf{B} = 10^3$	$C = 10^{-7}$	

c. Même consigne:

$A = \left(10^3\right)^2$	$B = \left(10^2\right)^4$	$C = \left(10^{-5}\right)^2$	<u>Propriété :</u>
$A = (1000)^2$	$B = (100)^4$	$C = (0,00001)^2$	Etant donnés deux entiers relatifs n et p , on a :
$\mathbf{A} = 1 \ 000 \times 1 \ 000$	B=100×100×100×100	C = 0,00001×0,00001	
$A = 1\ 000\ 000$	B = 100 000 000	C = 0,000 000 000 1	
$\mathbf{A} = \mathbf{10^6}$	$\mathbf{B} = \mathbf{10^8}$	$C = 10^{-10}$	
		12	

Applications: Ecrire les nombres sous la forme a^n :

$$10^2 \times 10^4 = 10^7 \times 10^{-11} = 10^{-4} \times 10^{-7} =$$

III- Ecriture scientifique d'un nombre décimal.

Activité:

Donner l'écriture décimale des nombres suivants :

$$0.123 \times 10^2 =$$

$$1230 \times 10^{-2} =$$

$$0.000\ 123\times10^5 =$$

$$123\ 000\times10^{-4} =$$

$$1,23 \times 10^1 =$$

Un nombre a plusieurs écritures utilisant les puissances de 10, mais une seule est appelée <u>écriture</u> <u>scientifique</u>(ou notation scientifique), c'est-à-dire de la forme « $a \times 10^n$ » avec :

 $1 \le a < 10$ et *n* est un entier positif ou négatif.

La notation (ou écriture) scientifique du nombre 12,3 est 1,23×10¹.

Applications: Donner l'écriture scientifique des nombres suivants :

$$A = 120\ 000\ 000\ 000 =$$

$$B = 0,000\ 000\ 000\ 002\ 01 =$$

$$C = 145\ 000\ 000 =$$

$$D = 0.000002 =$$

$$E = 1 000 000 =$$

$$F = 0.000\ 001\ 101 =$$

$$G = 450\ 000 \times 10^8 =$$

$$H = 123\ 000\ 000\ 000\ 000\ 000 \times 10^{-18} =$$

$$I = 0.000 145 \times 10^{13} =$$

$$J = 0.000\ 000\ 203 \times 10^{-11} =$$

$$K = 12 \times 10^{-5} \times 9 \times 10^9 = 12 \times 9 \times 10^{-5} \times 10^9 = 108 \times 10^4 = 1,08 \times 10^2 \times 10^4 = 1,08 \times 10^6$$

$$L = 2 \times 10^{-3} + 5 \times 10^{-2} = 2 \times 0,001 + 5 \times 0,01 = 0,002 + 0,05 = 0,052 = 5,2 \times 10^{-2}$$

$$M = \frac{7 \times 10^{-12} \times 6 \times 10^5}{21 \times 10^4} =$$

Donner l'écriture décimale du nombre :

$$A = 10^8 + 10^5 + 10^2 + 10^{-1} + 10^{-5}$$

A =

A =